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EFFICIENCY USING VARIOUS NONLINEAR CONTROL 

METHODS3

ABSTRACT
The Denavit-Hartenberg algorithm and the Lagrange-Euler method are used to derive realistic kinematics and 
dynamic models of a three-axis electric driven articulated planar robot with viscous, dynamic and static frictions. 
These robot models are further used for testing the following presented nonlinear robot control methods: fuzzy 
control, variable-structure control and model-reference variable-structure control. In the fuzzy-logic control 
method seven fuzzy sets are defined for two input variables. Triangular input membership functions and the 
7x7 fuzzy rule table are chosen. The fuzzy controller output value is calculated according to the centre of gravity 
principle. The same fuzzy control algorithm is used in all robot servo control loops with a proper scaling of the 
linguistic variables. To eliminate the chattering of the variable-structure control signal and to reduce energy 
consumption, sign function in the original variable-structure control law is replaced with the following functions: 
a continuous, saturation and exponential function, all of them with a very thin boundary layer. The same 
modifications are also made in the original model-reference variable-structure control method. In all presented 
control methods controller parameters are chosen according to the principle of maximal allowed tracking 
error and a minimum of energy consumption. These control methods are tested by computer simulations in C 
programming language in the case of moving the tool of the chosen robot arm. The simulation results proved 
similar efficiencies of all mentioned modified nonlinear robot control methods, although modified variable-
structure control algorithms are the most suitable because of their simplicity and lower number of controller 
parameters.
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1. INTRODUCTION

Industrial robots are very complex kinematics and dynamic systems with a lot of nonlinearities  
(Kurfess, 2005), (Kovačić et al., 2002), (Kreith, Goswami, 2005), (Lewis et al., 2006), (Nwokah, 
Hurmuzlu, 2002), (Selig, 1992), (Shell, Hall, 2000), (Schilling, 1990), (Stadler, 1995). It is very 
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important to achieve a precise robot trajectory tracking and robustness of the complex closed-
loop robot control system (Cheng et al., 2010), (Xi, Hesketh, 2010), (Xu et al., 2003a and 2003b). 
Some of the nonlinear control methods which are suitable according to these criteria for the use 
in robotics are fuzzy-logic control, variable-structure control with a sliding mode and model-
reference variable-structure control. The goal of this paper is to explore which of these nonlinear 
control methods is the most suitable for efficient and simple robot control. It is done by comparing 
energy consumptions of all these control methods if the maximal allowed tracking error along the 
desired robot trajectory is set.

The application of the fuzzy-logic control in robotics is useful for achieving fast and precise robot 
tool tip TCP trajectory tracking by using fuzzy sets and fuzzy rules to control robot motor shaft 
positions and speeds (Klir, Yuan, 1995), (Kovačić, Bogdan, 2000), (Kovačić, Bogdan, 2005). 

Variable-structure sliding-mode control is also often used for industrial robot motion control 
(Cavallo, Natale, 2004), (Chang, 2009), (Hwang, Wu, 2013), (Islam, Liu, 2011), (Šabanović, 2011) 
because of its robustness and simplicity of the control algorithm (Kardoš, 2007), (Kurfess, 2005), 
(Zeinali, Notash, 2010). If any deviation in robotic system variables occurs, this control method 
immediately pushes it back to the constraint by using sliding mode (Chen et al., 1990), (Edwards, 
Spurgeon, 1998), (Hirschorn, 2007),  (Kurfess, 2005), (Morgan, Özguner, 1985), (Temel, Ashrafiuon, 
2012). After reaching the sliding surface, the system behaves like a linear-time invariant robust 
system with a reduced order (Kardoš, 2007), (Perruquetti, Barbot, 2002). For this very fast and 
powerful control reaction, variable-structure controller needs a lot of energy which leads to very 
dangerous high-frequency vibrations of   the controlled system, i.e. chattering effect (Levant, 2010), 
(Utkin et al., 1999), (Vukić et al., 2003). To avoid discontinuity in control signal and high heat and 
energy losses which cause this chattering, various modified variable-structure control methods 
with a continuous signal (Hashimoto et al., 1987) or saturation function (Bastidas, Vinante, 
1997), (Mujanović, 1997), (Myszkorowski, 1990), (Perruquetti, Barbot, 2002), (Yu et al., 2005) are 
proposed. As a drawback, the ultimate accuracy and robustness of the sliding mode are partially 
lost (Perruquetti, Barbot, 2002).

Model-Reference Variable-Structure Control (MRVSC) (Ben Azza et al., 2014), (Mujanović, 1997), 
(Stefanello, Gründling, 2011) is a combination of Model Reference Adaptive Control (MRAC) 
((Åström, Wittenmark, 1995), (Ban, 1999), (Bishop, 2002), (Feng, Lozano, 1999), (Ioannou, Sun, 
1996)) and previously mentioned Variable-Structure Control (VSC). A reference model in MRAC is 
used to specify ideal response of an adaptive control system to the input signal, while the aim of an 
adaptation mechanism is to keep the difference between the model and the plant states as small as 
possible (Åström, Wittenmark, 1995), (Bishop, 2002), (Ioannou, Sun, 1996). Previously mentioned 
very fast and computationally simple variable-structure control method with a sliding mode can 
be used to deal with robot parameters variations and unmodelled robot dynamics for obtaining 
good tracking control (Kurfess, 2005). MRVSC is often used for controlling slower robot motions 
and it also has to be modified to avoid chattering (Mujanović, 1997).
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2. KINEMATICS AND DYNAMIC ROBOT MODELS

Before presenting previously mentioned robot control methods it is necessary to derive realistic 
kinematics and dynamic robot models which are exact as much as possible. Therefore, the Denavit-
Hartenberg algorithm of assigning coordinate frames to each link (Kurfess, 2005), (Kovačić et al., 
2002), (Schilling, 1990) of a three-axis electric driven articulated planar robot (Kovačić et al., 2002), 
(Schilling, 1990) shown in Figure 1 is used for deriving robot kinematic parameters shown in Table 
1. 

Figure 1. A three-axis articulated planar robot.
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Table 1. Kinematic parameters of a three-axis articulated planar robot.

Axis θ d a α
1 q1 0 a1 0

2 q2 0 a2 0

3 q3 d3 0 0
Source: (Schilling, 1990) and authors

For solving the chosen robot dynamics problem, the Lagrange-Euler (Kovačić et al., 2002), (Kurfess, 
2005), (Perruquetti, Barbot, 2002), (Schilling, 1990), or the Newton-Euler (Kovačić et al., 2002), 
(Kurfess, 2005), (Schilling, 1990) method can be used because both methods give the same robot 
dynamic model:
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where ,  and  are the ith joint variable, velocity and acceleration respectively (1£i£3), i is 
the ith actuator torque, ai and mi are length and mass of the ith robot segment, Jmi is moment of 
inertia for the ith motor, Nri  is the ith gear ratio, g0 is gravitational constant and bi() denotes friction 
opposing the motion of the ith joint. This realistic dynamic robot model contents the following 
viscous, dynamic and static joint and motor frictional forces (Kovačić et al., 2002),  (Schilling, 1990):

where  is the velocity for joint i (1£i£3); 
ivb , 

idb , 
isb are the coefficients of viscous, dynamic 

and static friction, respectively, for joint i; ei is a small positive parameter.

In computer simulations, robot construction and actuator limits are considered and the following 
total energy of all chosen robot motors is calculated:

where Ts denotes the whole robot trajectory traverse time, Uai is armature voltage and Iai is armature 
current for the ith robot motor (1£i£3).
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3. FUZZY CONTROL METHOD

The discrete inputs of the fuzzy-logic controller used in the ith robot joint servo control loop are 
motor position error signal ei(k) and the change of motor position error signal dei(k):

For these fuzzy-logic controller input variables seven fuzzy sets are defined: large negative, medium 
negative, small negative, zero, small positive, medium positive and large positive (Kovačić, Bogdan, 
2000), (Kovačić, Bogdan, 2005) to achieve a sufficiently good robot control method. The fuzzy 
controller input membership functions with a triangular form are chosen, where only two adjacent 
functions overlap (Kovačić, Bogdan, 2000), (Kovačić, Bogdan, 2005). The limits of robot motor 
torques are taken into account during the creation of the 7x7 fuzzy rule table (Kovačić, Bogdan, 
2000), (Kovačić, Bogdan, 2005). The fuzzy controller output value is calculated according to the 
centre of gravity principle (Kovačić, Bogdan, 2000), (Kovačić, Bogdan, 2005) which simplifies the 
calculation procedure.

The same fuzzy control algorithm is used in all robot servo control loops, but a proper scaling of 
the linguistic variables is done (Kovačić, Bogdan, 2000), (Kovačić, Bogdan, 2005). These input and 
output scaling parameters of fuzzy controllers are chosen according to the principle of maximal 
allowed tracking error along the desired robot tool tip TCP trajectory with a minimum of energy 
consumption. 

4. VARIABLE-STRUCTURE CONTROL METHOD

The original variable-structure robot control scheme (Chen et al., 1990), (Morgan, Özguner, 1985) 
is shown in Figure 2, where robot variables are error of each ith robot motor shaft angle ei(t) and 
speed dei(t)/dt.

Figure 2. The original variable-structure robot control scheme.
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As can be seen in Figure 2 the part of the control law is a signum function (the 1st VSC method):

with very frequent and fast switching which causes high-frequency oscillations of the control signal, 
i.e. chattering, as mentioned before. To reduce or eliminate unwanted chattering of the control 
signal, a signum function in the first part of the control law (8) can be replaced with a continuous 
signal given in (Hashimoto et al., 1987) (the 2nd VSC method):

or by a saturation function suggested in (Bastidas, Vinante, 1997), (Mujanović, 1997), (Myszkorowski, 
1990), (Perruquetti, Barbot, 2002), (Yu et al., 2005), (the 3rd VSC method):

or with modified exponential function (the 4th variable-structure control method):

where i is a thickness of the boundary layer for the ith robot motor, 1£i£n.

Controller parameters for all presented VSC methods can be adjusted according to the following 
principles: maximum allowed robot trajectory tracking error, no chattering and minimum of 
energy. 

5. MODEL-REFERENCE VARIABLE-STRUCTURE CONTROL METHOD

One of the simplest MRVS robot control methods (Ben Azza et al., 2014), (Mujanović, 1997), 
(Stefanello, Gründling, 2011) is given in Figure 3. A reference model is a part of this control system 
which consists of two loops: the inner and the outer control loop.
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Figure 3. The original model-reference variable-structure robot control scheme.
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The inner loop is an ordinary control loop composed of the PD-controller and the process, i.e. 
amplifier, robot joint with motor and sensors for measurement of motor shaft angle x1 and 
velocity x2, as shown in Figure 4, which act together as the 2nd order system. The coefficients of 
PD-controller are set according to demand to eliminate the smaller motor time constant and to 
have no overshooting. 

Figure 4. The scheme of the 2nd order system of the inner control of robot joint with motor.

Source: Authors

The input signal to the system is adjusted by the outer loop with a 2nd order reference model and 
a variable-structure controller, in such a way that the errors between the model states x1M and x2M 

and the system states x1 and x2 become zero. This original variable-structure controller has the 
same chattering problem as previously explained in equation (8), so the same modifications of the 
variable-structure control law uAi(t) as for u1i(t) in equations (9)-(11) have to be made, as shown 
in Figure 5. 
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Figure 5. The modifications in MRVS control.
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6. SIMULATION RESULTS

All explained and modified nonlinear robot control methods are tested by computer simulations 
in C programming language in the case of moving the tool of a three-axis electric driven 
articulated planar robot shown in Figure 1. The lengths of robot segments are: a1=0.3 [m], a2=0.2 
[m], and the distance between the tool tip TCP and the working plane is d3=0.1 [m] (i.e. length 
of the third segment). The masses of the segments are: m1=1 [kg], m2=0.7 [kg], m3=0.3 [kg]. 
The following friction coefficients are used in simulations: viscous motor friction coefficients 
bvm1=bvm2=bvm3=0.0000385534 [kgžm2/s]; viscous joint friction coefficients bv1=bv2=bv3=0.2 
[kgžm2/s]; dynamic joint friction coefficients bd1=bd2=bd3=0.1 [kgžm2]; static joint friction 
coefficients bs1=bs2=bs3=0.3 [kgžm2]; small constants e1=e2=e3=0.1.

Other robot motor parameters are: armature winding gains Ka1=Ka2=Ka3=0.12195 [W-1], armature 
time constants Ta1=Ta2=Ta3=2.012195 [ms], torque constants K1=K2=K3=0.0394 [Nžm/A], moments 
of inertia Jm1=Jm2=Jm3=0.00000268 [kgžm2], maximal armature currents Iam1=Iam2=Iam3=0.745 
[A], maximal output controller voltage URm1=URm2=URm3=10 [V], amplifier coefficients 
KAM1=KAM2=KAM3=2.4, gear ratios Nr1=291, Nr2=388, Nr3=582.

The presented fuzzy-logic and variable-structure sliding-mode control methods are tested in the 
case of moving the tool tip TCP of the chosen robot along the straight-line vertical trajectory from 
the starting point (0.2 [m], 0 [m]) to the ending point (0.2 [m], 0.4 [m]). During robot trajectory 
planning, the robot trajectory traverse time TS is set to the value TS=4.44 [s], in order to get as 
fast robot movement as possible regarding robot acceleration and velocity limits. The maximal 
allowed whole trajectory tracking error is set to 0.5 [mm]. The goal is to adjust the parameters of all 
proposed robot controllers to achieve the desired error with the minimum of energy consumption.

Due to simplicity and good performance, the same fuzzy controllers are used for all three robot 
control loops, but different scaling of the fuzzy controller outputs is necessary. Figure 6 shows that 
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energy consumption E=19 [J] is achieved along the robot trajectory. The fuzzy-logic controller 
reacts very fast, so it is convenient for fast robot tool tip movements.

The 1st variable-structure controller parameters are set according to the following procedure: the 
value of parameter Ks is set to 0.01 to enable trajectory tracking, the value of parameter l defines 
the amount of energy consumption and by changing parameter g the maximal allowed tracking 
error is reached. As can be seen in Figure 6 in simulations with controller parameters l=13.74 
[s-1] and g=3.837, 2.7 times more energy is needed for all robot motors in comparison with the 
fuzzy-controller because of chattering of the control signal. This chattering can be eliminated in 
all modified variable-structure control methods with a proper thickness of the boundary layer 
of d=0.05. After that, as can be seen in Figure 6, the amounts of consumed energy in all modified 
VSC methods are very similar to the fuzzy controller consumed energy. However, the modified 
variable-structure controllers are easier to use because they have fewer parameters to adjust than 
the fuzzy controllers.
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Figure 6. Energy consumptions for different variable-structure and fuzzy control methods.
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The proposed model-reference variable-structure robot control methods are usually used for slower 
robot tool tip TCP trajectories. All four MRVSC methods explained earlier are tested in the case of the 
same step input signal uref(t)=1*S(t) acting on each motor of the chosen robot shown in Figure 1. The 
PD-controllers gain coefficients are set as: P1=P2=P3=0.512 [V/rad] and D1=D2=D3=0.001256 [Vs/rad]. 
The parameters of MRAC are set to be equal to parameters of the 2nd order system: KMi=Ksi, xMi=xsi, 
TMi=Tsi, 1£i£3. The parameters of VSC are defined according to the demands of sufficient velocity 
of transient responses: l1=l2=l3=100 [s-1] and maximal allowed tracking error emax=0.04*uref for each 
robot motor: g1=14.11, g2=1.029, g3=0.1221. The signum function in the 1st MRVSC method causes 
chattering of the control signal uA(t) and energy consumption of 1.43 [J]. Therefore, the 1st MRVSC 
method is modified in three presented ways, but thickness of boundary layer d has to be as small as 
possible because of the existence of a steady-state error. As can be seen in Figure 7 the thickness of 
the boundary layer for the first robot motor d1=0.057 in the 2nd MRVSC method, d1=0.095 in the 
3rd method and d1=0.073 in the 4th MRVSC method reduce total energy consumption by one half.

Figure 7. Influence of boundary layer thickness on energy consumption in MRVSC methods.
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7. CONCLUSION

The results of computer simulations proved previously assumed similar efficiencies in robot tool 
tip TCP trajectory tracking, chattering elimination and energy consumption minimization of all 
presented modified nonlinear robot control methods. The modified variable-structure control 
algorithms are the most suitable for robot control because of its simplicity and a lower number of 
controller parameters. The fuzzy-logic control method is very convenient for controlling fast robot 
tool tip movements, but it represents a more complex robot control method because of a lot of 
fuzzy-controller parameters which have to be determined. The model-reference variable-structure 
robot control method is the most useful for controlling slow robot tool tip TCP motions. 

The next research goal can be further efficiency improvement of the presented modified 
nonlinear robot control methods by optimizing their controller parameters according to different 
optimization criteria and by analyzing their robustness.
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USPOREDBA EFIKASNOSTI SLIJEĐENJA 
TRAJEKTORIJE ROBOTA PRI UPOTREBI RAZLIČITIH 

METODA NELINEARNOG UPRAVLJANJA3

SAŽETAK
Denavit-Hartenbergov algoritam i Lagrange-Eulerova metoda upotrijebljeni su za izradu realnog kinematičkog 
i dinamičkog modela troosnog rotacijskog ravninskog robota s električnim motorima i viskoznim, dinamičkim 
i statičkim trenjem. Ti su modeli robota kasnije korišteni za provjeru sljedećih predstavljenih nelinearnih 
postupaka upravljanja robotom: neizrazitog upravljanja, upravljanja s promjenjivom strukturom te 
upravljanja s referentnim modelom i promjenjivom strukturom. U metodi upravljanja s neizrazitom logikom 
definirano je sedam neizrazitih skupova za dvije ulazne varijable. Izabrane su trokutaste ulazne funkcije 
pripadnosti i tablica neizrazitih pravila veličine 7 x 7. Vrijednost izlaza neizrazitog regulatora izračunata je po 
principu težišta neizrazitog skupa. Isti neizraziti upravljački algoritam upotrijebljen je u svim petljama slijednog 
upravljanja robotom, uz odgovarajuće skaliranje jezičnih varijabli. Za uklanjanje trešnje iz upravljačkog signala 
s promjenjivom strukturom i zbog smanjenja potrošnje energije, funkcija predznaka je u prvobitnom zakonu 
upravljanja s promjenjivom strukturom zamijenjena sljedećim funkcijama: neprekidnom, funkcijom zasićenja 
i eksponencijalnom funkcijom, s vrlo tankim graničnim slojem u svima. Iste su promjene također napravljene i 
u originalnoj metodi upravljanja s referentnim modelom i promjenjivom strukturom. U svim su predstavljenim 
postupcima upravljanja parametri regulatora izabrani po principu najveće dozvoljene pogreške slijeđenja i 
najmanje potrošnje energije. Ove su metode upravljanja provjerene računalnim simulacijama u programskom 
jeziku C na primjeru kretanja alata izabrane robotske ruke. Rezultati simulacija dokazali su sličnu efikasnost 
svih spomenutih promijenjenih nelinearnih postupaka upravljanja robotom, iako su modificirani upravljački 
algoritmi s promjenjivom strukturom najprimjenjiviji zbog svoje jednostavnosti i manjeg broja parametara 
regulatora.

Ključne riječi: robot, neizrazito upravljanje, upravljanje s promjenjivom strukturom, upravljanje s referentnim 
modelom, trešnja
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